炸金花游戏

当前位置: 首 页 - 科学研究 - 学术报告 - 正文

炸金花游戏 、所2025年系列学术活动(第140场):梅茗 教授 McGill University & Champlain College

发表于: 2025-10-20   点击: 

报告题目:Traveling Waves for Burgers-Fisher-KPP Equations with Singularity

报告人:梅茗 教授 McGill University & Champlain College 加拿大

报告时间:2025年10月23日  8:30-9:30

报告地点:腾讯会议 ID:621-584-582

或点击链接直接加入会议:

//meeting.tencent.com/dm/Fhub6RihNT8K

校内联系人:刘长春 [email protected]


报告摘要:

In this talk, I will present a recent study on  Burgers-Fisher-KPP equation with singular slow/fast diffusion and singular/regular convection in the form of   $u_t-D\Delta u^m+\alpha(u^p)_x=f(u)$ with $m,\,p>0$, focusing on the existence, non-existence, regularity and stability of traveling waves. The values of m and p essentially affect the existence/non-existence of regular/sharp traveling waves as well as their regularity.   By combining phase-plane analysis and variational techniques, we obtain a complete classification of existence/non-existence of regular/sharp traveling waves related to m and p. In the singular regimes with 0<p<1 or 0<m<1, where the convection or diffusion exhibit strong singularity at u=0, we introduce a change of variables to overcome the singularity, thereby deriving existence/non-existence results characterized by the minimal convection coefficient. Finally, for the case of slow diffusion $m>1$ with convex convection p>1, we prove the stability of non-critical traveling waves via $L^{1}$-weighted energy method. This is a joint work with Zhuangzhuang Wang, Rui Huang, Zejia Wang and Wenhuan Liang.


报告人简介:

梅茗,加拿大麦吉尔大学的Adjunct Professor,加拿大尚布兰学院的终身教授,江西师范大学特聘教授,国家基金委外国资深学者(原“海外杰青”),科技部海外高端人才,日本文部省JSPS外国资深学者,国际学术机构 ScholarGPS 发布的2024全球顶尖科学家排名前0.98%。主要从事Navier-Stokes方程、欧拉方程、欧拉-泊松方程、时滞反应扩散方程解的定性分析等方面的研究,在ARMA, SIMA, M3AS等一流学术刊物发表论文140 余篇,被《美国数学评论》列为SIMA及JDE的top authors,有4 篇论文是ESI 的高被引论文。是《Applicable Analysis》等4个SCI 国际期刊的编委,也一直是“科学探索奖”评审专家之一。